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In this supplementary document, we first present addi-
tional information about our dataset, evaluation setting, im-
plementation details in Sec. A. We then elaborate on tech-
nical details of our methods in Sec. B. Additional results
of the two return mask segmentation, more quantitative and
qualitative results are provided in Sec. C.

A. Datasets and implementation details

A.1. Dataset

Town dataset To simulate TownReal dataset, we approx-
imate a diverged beam profile using 37 subrays and the di-
vergence angle γ0 = 2 mrad [3]. We use the subray distri-
bution proposed from [14] (cf . Fig. 1). The dataset is shown
in Fig. 3.

Waymo dataset We use the following 4 scenes (cf .
Fig. 4) that are mostly static from Waymo [10] dataset

Scene ID

Scene 1 10017090168044687777 6380 000 6400 000
Scene 2 10096619443888687526 2820 000 2840 000
Scene 3 10061305430875486848 1080 000 1100 000
Scene 4 10275144660749673822 5755 561 5775 561

A.2. Evaluation setting

Waymo NVS setting We simulate the new trajectory by
shifting the sensor by [1.5, 1.5, 0.5] meters (see Fig. 4),
yielding an overall displacement of ≈2.18 meters. This
displacement magnitude corresponds to the requirements of
various tasks, such as lane changes or adapting the sensor
rig from a car to a truck. Moreover, our displacement from
the trajectory is similar [15] or even larger [8] than used
in prior NVS works. Nevertheless, we run additional ex-
periments by varying the displacements and report results
in Tab. 1. NFL consistently outperforms baseline methods
under different settings, and the improvement is more pro-
nounced under large displacements.

i-NGP DS-NeRF URF LiDARsim Ours

(0.5, 0.5, 0.5) 7.0 / 14.4 7.0 / 16.0 9.0 / 19.6 16.1 / 33.1 5.4 / 13.0
(1.5, 1.5, 1.0) 8.4 / 17.6 7.8 / 18.5 11.0 / 27.5 16.5 / 37.9 5.8 / 14.3
(2.5, 2.5, 1.5) 11.6 / 28.0 9.3 / 22.8 13.9 / 35.5 17.2 / 46.3 6.4 / 18.4

Table 1. Varying the displacement on Waymo NVS dataset. Numbers are reported as
MedAE / CD [cm].

Figure 1. Example diverged beam profile approximated via 37
diverged rays.

Point cloud registration task We utilize 49 paired con-
secutive frames per scene, with a relative displacement of
≈1 meter. TE is reported in centimeters and RE is reported
in degrees.

A.3. Implementation details

Our method. Our model is implemented based on torch-
ngp [7, 12] and can be trained on a single RTX 3090 GPU.
During training we minimize using the Adam [4] optimiser,
with an initial learning rate of 0.005 which linearly decays
to 0.0005 towards the end of training. We clip the gradient
magnitudes of all parameters to 1.0 to stabilize the optimi-
sation. In the first stage, we sample N c = 768 points and in
the second stage Nf = 64 points for each ray. The window
size ϵ for volume rendering is set to 0.8 m, and the buffer
value ξ between two returns is set to 2 m. The weights in
the loss function, i.e., λe, λd, and λs, are set to 50, 0.15,
and 0.15, respectively.



LiDARsim. Because the original implementation is not
publicly available, we re-implemented LiDARsim [6] fol-
lowing the paper as close as possible. Specifically, for all
points in the training set, we first estimate pointwise normal
vectors using all points within a 20 cm radius ball. Then,
we apply voxel down-sampling [11] with a voxel size of 4
cm and reconstruct a disk surfel1 for each point. Here, the
input point represents the disk center and it orientation is
defined by the estimated normal vector. At inference time,
we perform ray-surfel intersection to determine the intersec-
tion points. We empirically observed that LiDARsim’s [6]
performance is sensitive to the selected surfel radius. There-
fore, we have experimented with both a distance-dependent
and fixed surfel radius and found that fixed surfel radius
of 6 cm and 12 cm for Waymo and Town dataset, respec-
tively lead to best range accuracy. To enable second range
estimation, we augment LiDARsim with a diverged beam
profile approximated using 7 rays. To obtain the second
return mask, we consider a LiDAR beam to have two re-
turns if the maximum range difference between all subrays
is larger than a threshold2. The first return is defined as the
closest ray-surfel intersection, while the second return is the
nearest one that is at least two meters away. To train the
ray drop module, we utilize 40k samples from the Waymo
dataset [10], and only apply this module after the ray-surfel
intersection to refine the ray drop patterns. Please see Fig. 5
for more qualitative results.

Other NeRF methods. We also use torch-ngp [12] code-
base to implement other methods, using the same network
and sampling configurations as used in ours. To estimate
the range, we remove the radiance MLP and instead, apply
volume rendering of the sampled ζ along the ray. For DS-
NeRF [2] and URF [9], we replace their positional encoding
with a hash-grid [7] to facilitate a fair comparison with i-
NGP [7]. Moreover, we substitute the original L2 loss with
the L1 loss, as it results in better performance. Finally, we
follow the original paper and augment DS-NeRF [2] and
URF [9] with the ray distribution loss and line-of-sight loss,
respectively, to regularise the underlying geometry.

B. Methodology and loss functions

First range estimation If the maximum weight at the first
stage wc

p is below a predefined threshold η = 0.1, we as-
sume that the network is uncertain about the reconstruction
and the resulting range estimate may be inaccurate. In these
cases, we only apply the coarse stage volume rendering and
directly estimate the range as: ζ =

∑Nc

j=1 w
c
j · ζj .

1We use the implementation from Point-Cloud-Utils [13] library.
2Sensor-specific parameter, 2 m on Waymo dataset.

Range reconstruction loss For coarse range, we impose
a Gaussian distribution around the ground truth ζ̂ and we
anneal the standard deviation δ during training, the anneal-
ing procedure is defined as:

δk = δmax

(
δmin

δmax

)k/kmax

(1)

where k denotes the iteration number, kmax is the maximum
iteration, and δmax and δmin correspond to empirically de-
termined bounds for the standard deviation. The annealing
parameters δmin and δmax are set to 0.25/0.3 and 1.2/1.6,
respectively, for the Town and Waymo datasets. The maxi-
mum iteration kmax is set to 16000/24000 for the Town and
Waymo datasets. The ground truth weight ŵj is computed
as:

ŵj =

∫ ζj+1

ζj

1

δ
√
2π

exp

(
− (x− ζ̂)2

2δ2

)
dx. (2)

C. Additional results
Runtime analysis Our central ray version takes 4.1 ms
per frame to render the single returns on an RTX 3090
GPU, while other NeRF-style methods require 2.4 ms. Only
around 10% of rays have second returns, resulting in low
computational overhead. While our diverged beam incurs
additional costs due to querying diverged rays, it can be dis-
abled if needed, without compromising first return perfor-
mance (cf . Tab. 1). Our re-implementation of LiDARsim
achieves 10 Hz runtime, but could be further improved us-
ing accelerated ray-tracing, e.g. OptiX. Note that all meth-
ods already match or even (greatly) exceed the normal Li-
DAR measurement frequency (≈10 Hz).

Ray drop modelling There clearly is a link between ray
drops and beam divergence. However, we found that mod-
eling it through the beam feature yields worse performance,
possibly because fbeam uses frange, which encodes the statis-
tics of returns and is less meaningful for dropped rays. In
future work, beam divergence could instead be incorporated
through Intergrated Positional Encoding [1] to model ray
drops.

Two return mask prediction We conduct an ablation
study to investigate different design choices for predicting
the two return mask and summarize the results in Tab. 2.
We observe that concatenating the range feature frange with
the beam feature fbeam improves the segmentation recall
and, consequently, the second range estimation. In addition
to predicting the two return mask from the beam feature,
we experiment with a simple heuristic-based baseline that
thresholds the depth standard deviation of sub-rays. Specif-
ically, we considered a LiDAR beam to have two returns if



Features Two return segmentation Second range
fgeo fdir frange Recall ↑ Precision ↑ IoU ↑ Recall@0.5 ↑ MAE ↓ MedAE ↓

✓ 78.0 61.6 52.8 60.1 620.1 26.7
✓ ✓ 79.8 62.9 54.5 61.1 589.1 21.8
✓ ✓ ✓ 82.1 55.6 49.8 67.4 505.1 13.4

threshold depth std. 30.8 24.2 14.8 24.7 1532.2 1461.4

Table 2. Qualitative results of two return segmentation on Waymo
Interp. dataset.

Vehicle Background
Method Recall ↑ Precision ↑ IoU ↑ Recall ↑ Precision ↑ IoU ↑

i-NGP [7] + L2 71.1 97.0 69.4 99.6 96.5 96.2
i-NGP [7] 94.8 89.7 85.6 98.7 99.4 98.1
DS-NeRF [2] 91.4 88.9 82.2 98.7 99.1 97.8
URF [9] 93.8 89.0 84.1 98.6 99.3 97.9
Lidarsim [6] 92.2 74.4 70.2 95.9 99.1 95.1
Ours 95.7 91.2 87.6 98.8 99.5 98.3

Table 3. Semantic segmentation results on Waymo Interp. dataset.

TownClean TownReal Waymo interp. Waymo NVS
Method MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓

i-NGP [7] + L2 63.6 14.8 37.1 78.2 18.4 44.5 41.4 14.7 24.9 47.3 17.6 29.5
i-NGP [7] 42.2 4.1 17.4 49.8 4.8 19.9 26.4 5.5 11.6 30.4 7.3 15.3
DS-NeRF [2] 41.7 3.9 16.6 48.9 4.4 18.8 28.2 6.3 14.5 30.4 7.2 16.8
URF [9] 43.3 4.2 16.8 52.1 5.1 20.7 28.2 5.4 12.9 43.1 10.0 21.2
LiDARsim [6] 159.6 0.8 23.5 162.8 3.8 27.4 116.3 15.2 27.6 160.2 16.2 34.7
Ours 32.0 2.3 9.0 39.2 3.0 11.5 30.8 5.1 12.1 32.6 5.5 13.2

Table 4. Results of LiDAR novel view synthesis for the first range.

the standard deviation is above 303 cm. However, as shown
in Table 2, this approach achieves limited success and per-
forms much worse than the learned methods. More qualita-
tive results are presented in Fig. 6.

Importance of the second return Multiple returns are
critical for vegetation analysis in remote sensing [5]. NFL
is the first work to model the second return by combining
beam divergence and truncated volume rendering. Unfor-
tunately, second returns do not have semantic annotations
in the Waymo dataset, which precluded a quantitative anal-
ysis. Nevertheless, qualitatively the rendered second returns
are located mostly in vegetation regions, as shown in Fig. 2.
This correlation suggests that secondary returns could in-
deed be useful for detecting vegetation.

Semantic segmentation on Waymo Interp. dataset We
report additional semantic segmentation results on Wamo
Interp. dataset in Tab. 3. NFL achieves the best perfor-
mance for vehicle segmentation. Please note that Waymo
Interp. is of significantly smaller size (10 test frames vs. 50
frames per scene in other datasets).

Quantitative results We perform further experiments to
evaluate an additional baseline method, denoted as i-NGP

3Empirically determined as it leads to the best Intersection-of-Union
score.

TownClean Waymo Interp.
Method MAE ↓ MedAE ↓ CD ↓ MAE ↓ MedAE ↓ CD ↓

i-NGP [7] + L2 60.8 (-2.8) 12.6 (-2.2) 34.4 (-2.7) 40.8 (-0.6) 13.1 (-1.6) 24.0 (-0.8)
i-NGP [7] 41.0 (-1.2) 4.1 (0.0) 17.6 (0.2) 25.3 (-1.1) 4.5 (-1.0) 10.5 (-1.1)
DS-NeRF [2] 37.4 (-4.2) 3.0 (-0.9) 14.4 (-2.2) 27.4 (-0.8) 5.4 (-1.0) 13.6 (-0.9)
URF [9] 46.4 (3.0) 4.5 (0.3) 18.4 (1.6) 28.3 (0.1) 5.3 (-0.1) 13.1 (0.2)
Ours 32.0 (-2.1) 2.3 (-2.5) 9.0 (-3.9) 30.8 (-2.1) 5.1 (-2.0) 12.1 (-2.3)

Table 5. Ablation study of volume rendering for active sensing.

TownClean TownReal Waymo NVS
Method Rec@5 ↑ RE ↓ TE ↓ Rec@5 ↑ RE ↓ TE ↓ Rec@2 ↑ RE ↓ TE ↓

i-NGP [7] + L2 40.6 0.2 6.2 39.6 0.2 6.7 26.5 0.1 3.2
i-NGP [7] 70.3 0.1 4.2 76.0 0.1 4.2 60.2 0.1 1.9
DS-NeRF [2] 58.3 0.2 5.1 56.2 0.2 5.1 42.3 0.1 2.4
URF [9] 61.5 0.2 5.0 59.9 0.1 4.7 32.1 0.1 2.7
LiDARsim [6] 82.8 0.1 3.4 79.2 0.1 3.4 62.8 0.1 1.8
Ours 80.2 0.1 3.7 85.9 0.1 3.4 71.9 0.1 1.7

Table 6. Point cloud registration results on three datasets.

Vehicle Background
Method Recall ↑ Precision ↑ IoU ↑ Recall ↑ Precision ↑ IoU ↑

i-NGP [7] + L2 68.4 90.2 64.1 99.3 96.3 95.6
i-NGP [7] 93.2 85.9 80.9 98.3 99.2 97.6
DS-NeRF [2] 90.7 87.1 80.2 98.5 98.9 97.4
URF [9] 87.8 81.7 73.7 98.0 98.4 96.5
Lidarsim [6] 90.5 70.5 65.9 94.9 99.0 94.0
Ours 95.9 87.0 83.9 98.3 99.5 97.8

Table 7. Semantic segmentation results on Waymo NVS dataset.

[7] + L2, which optimizes the range estimation through L2
loss [2, 9]. The comprehensive results of our experimenta-
tion are presented in Tab. 4, Tab. 5, Tab. 6, and Tab. 7. Our
findings reveal that the L2 loss performs inferior to its L1
loss counterpart (i.e. i-NGP [7]). However, replacing the
standard volume rendering with the proposed formulation
for active sensors, still leads to improved performance, as
demonstrated in Tab. 5.

Qualitative results We show additional qualitative results
in Fig. 7, Fig. 8, Fig. 9, and Fig. 10. We sample the middle
frame of each dataset and present the first range errors in
range-view projection.



Figure 2. Rendered secondary returns are color-coded in yellow.
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Figure 3. Visualisation of Town dataset. Employing a diverged beam profile in range simulation results in an overestimation of range in the
high range regime (-16 16 cm). Such range difference is also reflected on delicate structures, as evidenced by the point cloud view.



(a) Geometry (b) Intensity (c) Waymo Interp. (d) Waymo NVS

Single return
Dual returns (first)
Dual returns (second)

Points
Sensor positions of training set
Sensor positions of test set

Points0 0.25
Sensor positions of training set
Sensor positions of test set

Figure 4. Visualisations of Waymo dataset. We accumulate all 50 frames for each scene and show their geometry, intensity profile, and
sensor positions of training and test sets on Waymo Interp. and Waymo NVS datasets.
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Figure 5. Ray drop segmentation on Waymo Interp. dataset using LiDARsim [6]. We show both the initial ray drop mask from ray-surfel
query and the refined masks using learned ray-drop model.
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Figure 6. Qualitative results of two return mask segmentation.



i-N
G

P
D

S-
N

eR
F

U
R

F
Li

D
A

R
si

m
O

ur
s

N
or

m
al

i-N
G

P
D

S-
N

eR
F

U
R

F
Li

D
A

R
si

m
O

ur
s

N
or

m
al

Azimuth angle [ ]∘

Figure 7. Qualitative results of first range estimation on TownClean dataset.
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Figure 8. Qualitative results of first range estimation on TownReal dataset.
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Figure 9. Qualitative results of first range estimation on Waymo NVS dataset.
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Figure 10. Qualitative results of first range estimation on Waymo Interp. dataset.
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